КРИТЕРИИ И МЕТОДИКА ОЦЕНИВАНИЯ ВЫПОЛНЕННЫХ ОЛИМПИАДНЫХ ЗАДАНИЙ ТЕОРЕТИЧЕСКОГО ТУРА возрастной группы (7-8 класс) муниципального этапа всероссийской олимпиады школьников по химии 2024-2025 учебный год

По теоретическому туру максимальная оценка результатов участника возрастной группы (7-8 класс) определяется арифметической суммой всех баллов, полученных за выполнение заданий и не должна превышать **60 баллов.**

Задача 1.

Содержание верного ответа и указания по оцениванию	Балль
(допускаются иные формулировки ответа, не искажающие его смысла)	
1) Найдем количество вещества воды, содержащееся в капле	
$n(H_2O) = m M = 10^{-4} 18 = 5.6 \cdot 10^{-6}$ моль	3
2) Найдем количество молекул в капле	
2) Найдем количество молекул в капле $N = n * N_A = 5,6 \cdot 10^{-6} * 6,02 \cdot 10^{23} = 3,4 \cdot 10^{18}$	3
3) Рассчитаем суммарное количество атомов водорода и кислорода в	
капле.	
Исходя из состава молекулы воды (один атом кислорода и два ат	ома 1
водорода) количество атомов кислорода будет равно количеству	1
молекул воды $3,4 \cdot 10^{18}$, а водорода в два раза больше $6,8 \cdot 10^{18}$.	1
Суммарное количество всех атомов в капле дождя составит 10,2 · 10	0^{18} 1
Если в решении сразу указано суммарное количество атомов всех	
элементов, то выставляется максимальный балл за эту часть зад	ачи
(4 балла)	
Максимальный балл	10
Все элементы записаны неверно	0

<u>Задача 2.</u>

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1) Речь идет о водороде (H₂)	3
2) В опыте проводимом Парацельсом протекала реакция	
$Fe + H_2SO_4 = FeSO_4 + H_2 \uparrow$	2
3) В опыте Лавуазье	
$3\text{Fe} + 4\text{H}_2\text{O} = \text{Fe}_3\text{O}_4 \text{ (FeO, Fe}_2\text{O}_3) + 4\text{H}_2\uparrow \text{ (t)}$	3
4) Расчет объема водорода, который выделился при взаимодействии 5	
г железа с избытком серной кислоты	
Исходя из уравнения количество вещества водорода равно	
количеству вещества железа $n(Fe) = n(H_2)$	2
n(Fe) = m M = 5 56 = 0.089 (моль)	2
Объем водорода определяем по формуле	
$V(H_2)=n \cdot Vm = 0.089 * 22.4 = 1.99 (\pi)$	3
Максимальный балл	15
Все элементы записаны неверно	0

<u>Задача 3.</u>

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1) Самым легким металлом является литий Li (вещество A)	2
Γ аз \mathbf{F} – водород \mathbf{H}_2 , который легко воспламеняется и	2
восстанавливает металлы из оксидов	
Оксид металла оранжевого цвета – оксид ртути II HgO (вещество	2
\mathbf{B})	
При восстановлении оксида ртути водородом образуется ртуть	
\mathbf{Hg} (вещество Γ), которая при обычных условиях является	2
жидкостью	
2) $2Li + 2H_2O = 2LiOH + H_2\uparrow$	2
$2H_2 + O_2 = 2H_2O$	2
$HgO + H_2 = Hg + H_2O$	2
$2Hg + O_2 = 2HgO$	2
3) Опыт со ртутью в реторте проводил Михаил Васильевич	2
Ломоносов. Закон сохранения массы: масса веществ,	2
вступающих в химическую реакцию, равна массе веществ,	
образующихся в результате реакции.	
Максимальный балл	20
Все элементы записаны неверно	0

<u>Задача 4.</u>

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1) Определим массовую долю сахара в первом растворе, после добавления одного кусочка сахара:	
$\omega_1(\text{caxapa}) = (2)/(2+250) = 0,0079$ (или 0,79 %).	3
2) Определим массу сахара в 5 мл чая (отпитый объем):	
$\Delta m = 5 \cdot 0,0079 = 0,04 \Gamma$	2
3) Следовательно, массовая доля сахара в чае после добавления второго кусочка:	
ω_2 (caxapa)= $(2+2-0.04)/(250+2-5+2)=3.96/249=0.0159$ (или 1.59%).	10
Максимальный балл	15
Все элементы записаны неверно	0