

73-00231)

Scientific supervisor: Candidate of Chemical

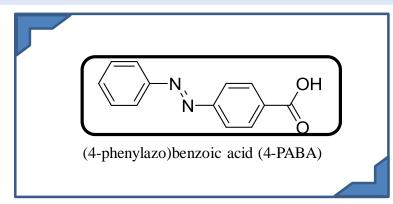
Sciences, Associate Professor M.S. Fedorov

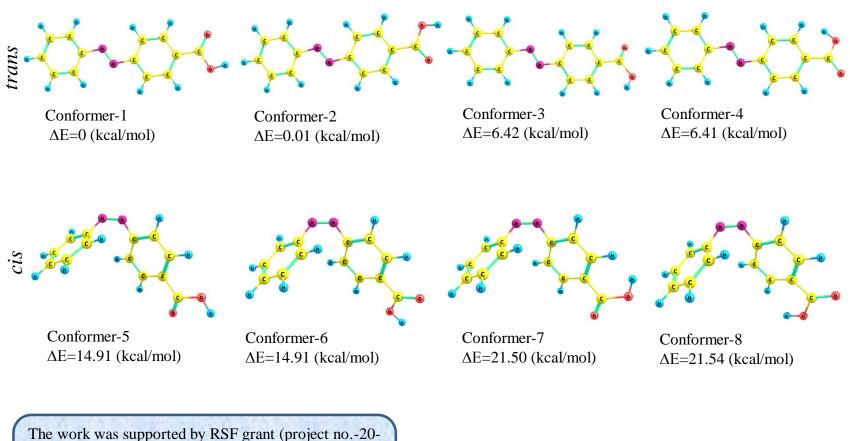
REFLECTION OF CONFORMATIONAL PROPERTIES OF A FREE MOLECULE OF NONMESOGEN 4-PHENYLAZOBENZOIC ACID IN CRYSTAL STRUCTURES

Filippov A. A., Institute of Mathematics, Information Technology and Natural Sciences, 1st year Master in Chemistry Ivanovo State University

Introduction

The principles of supramolecular chemistry are successfully applied in the creation of new hydrogen bonded mesomorphic complexes with mesogen and nonmesogen complementary compounds. The structure of nonmesogen 4-phenylazobenzoic acid (4-PABA) allows its use as a monofunctional component of potentially mesogen hydrogen bonded complexes.


Purpose of the work


Quantum-chemical study of the conformational properties of a free 4-PABA molecule, comparison of the obtained data with structures stabilized in the crystal.

Method

Quantum chemical calculations (study of conformational properties)

Gaussian09 (DFT/B3LYP/cc-pVTZ)

Contacts

Filippov A. A. Ivanovo State University Email: a.filippov4498@gmail.com

Conclusions

Using the DFT method, it was determined that the 4-PABA molecule has 8 conformers, among which the conditional "cis" and "trans" conformers can be distinguished. The relative energy of the "cis" conformers is significantly higher (15-22 kcal/mol) than the energy of the "trans" conformers. The most energetically advantageous are the "trans" conformers 1 and 2, which differ from each other in the position of the carboxyl group relative to the plane of the molecule. The torsion angle N=N...C=O in conformer 1 takes the value 0°, and in conformer 2-180°. This torsion angle is selected as a search criterion in the Cambridge database. It was determined that the crystal contains structures close to conformer 1 (53.5%) and conformer 2 (46.5%). No "Cis" conformers were detected. Thus, the calculated data adequately describe the conformational properties of the molecules. Modeling of H-complexes can be based on using the structure of a more favorable conformer.